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Abstract: Osteoarthritis (OA) poses a growing challenge for the aging population, especially in hip and knee 

joints, contributing significantly to disability and societal costs. Conventional clinical evaluations, typically 

performed in controlled settings, face difficulties in capturing the dynamic characteristics of rehabilitation and 

functioning in real-life scenarios. The study assessed the use of automated unsupervised evaluations in the 

rehabilitation process for patients after hip and knee replacements. We analyzed data from 1144 individuals 

who used a digital application after surgery, activity data were collected using the Garmin Vivofit 4. Several 

parameters such as the Peak 6-Minute Consecutive Cadence (P6MC) and Peak 1-Minute Cadence (P1M) were 

computed and analyzed on a daily basis. The results indicated that cadence measurements, specifically, can 

effectively differ among individuals with hip and knee conditions as well as the recovery process. Moreover, 

these metrics demonstrated a high level of responsiveness in monitoring the progress of recovery, surpassing 

the effectiveness of simply measuring the total number of steps taken. The study highlighted the capacity of 

technology-driven, patient-centered rehabilitation to improve accuracy, tailor therapy to individual patients, 

and increased patient involvement. This research also highlighted the significance of automated, unsupervised 

assessments in enhancing rehabilitation results for OA patients following hip and knee replacement, as tele-

rehabilitation becomes increasingly important.  

Keywords: wearable sensors; activity tracker; mHealth; osteoarthritis; rehabilomics; rehabilitation; 

personalized care 

 

1. Introduction 

Osteoarthritis (OA) is a prominent contributor to disability and a significant driver of societal 

expenditure among the older population. The prevalence of this condition is on the rise due to a 

combination of factors, including an aging population and a growing prevalence of obesity, trauma, 

abnormal joint morphology, developmental dysplasia of the joint, muscle weakness of the joint, 

occupation (high-impact physical activity or sport), sedentarity, etc.[1,2]. 

The hip and knee joints, which bear the weight of the body, are the most prominently affected 

[3]. Consequently, they stand as the primary drivers of disability among the elderly population. The 

prevalence of OA shows a consistent upward trajectory with advancing age, affecting approximately 

20% of individuals aged 60 or older [4].  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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The rehabilitation process holds significant importance for patients who have been diagnosed 

with hip and knee OA following total hip or knee replacement [5,6]. Historically, the examination 

and management of these individuals have predominantly relied on supervised clinical assessments 

conducted within controlled clinical environments [7]. Nevertheless, it is important to acknowledge 

that these assessments possess inherent limits in their ability to fully capture the intricate nature of 

real-world experiences encountered during the process of rehabilitation [8]. Furthermore, traditional 

methods evaluate data at a specific moment, assuming the stability of parameters over time. 

However, the intricate dynamics of real-life scenarios encompass physical, and temporal variations 

throughout the day, week, and so forth, particularly in the individual-level factors such as pain, 

stress, emotion, and motivation. 

The use of technology-assisted rehabilitation is gaining popularity due to its ability to provide 

objective and automated assessments of patients' motor function and therapy adherence, 

incorporating factors like kinematics, activity level, muscle activity, and more [9]. Mobile health 

technologies, including wearable and portable sensors, are now being used to assess mobility in 

unsupervised, real-world situations, offering a more patient-relevant and ecologically valid approach 

compared to routine clinical tests [10]. This approach helps overcome the limitations of traditional 

clinical assessments where the outcomes used in the research study, mainly subjective evaluated by 

the clinicians, may not be sensitive enough to detect subtle modifications of the patients because of 

low resolution and ceiling effect [11]. Quantitative outcomes used to validate the intervention are, 

most of the time, based on clinical or laboratory assessment which are both quite artificial situations 

not reflecting the activities of daily living and the real-world evidence [10]. 

The implementation of automated unsupervised evaluations signifies a substantial shift in the 

approach to evaluating and providing support for patients during their rehabilitation process. The 

potential advantages are diverse, encompassing enhanced precision in assessments, the possibility of 

tailored, patient-centred therapies, and heightened patient involvement in their own rehabilitation 

journey [12,13]. The objective of this study was to examine the potential of automated technology in 

augmenting the capacities of patients and rehabilitation specialists. 

Remote health monitoring, facilitated by non-invasive wearable sensors and modern 

communication technologies, ensures patient safety at home while enabling continuous data 

collection between sessions [14]. This data can detect even minor changes in a patient's status, 

providing more precise and sensitive outcomes, known as digital biomarkers [15]. Digital 

biomarkers, collected through various sensors such as accelerometers, smartwatches, connected 

insoles, and smartphones, offer continuous and objective measurements of biological and 

physiological data [16]. They can reveal disease characteristics not easily observable in clinical 

settings. Digital biomarkers can be categorized as active (supervised) or passive (unsupervised) [17]. 

The widespread adoption of smartphones equipped with built-in accelerometers and gait-

detection algorithms has introduced a higher level of detail in monitoring mobility data. Recent 

research efforts have applied accelerometry techniques to individuals undergoing joint arthroplasty 

[15,18]. Given the positive impact of physical activity on enhancing functionality, promoting bone 

healing, and ensuring the stability of implants, the focus of these studies has been on tracking step 

count recovery. This assessment aims to determine if post-operative activity levels surpass those 

recorded before the surgery and the duration required to achieve this [19]. 

This method capitalizes on smartphones' ability to capture activity data in real-world conditions, 

spanning a diverse range of activities [20]. However, it's crucial to recognize that these assessments 

are susceptible to variations influenced by how subjects carry their phones [21]. Encouragingly, the 

self-administered six-minute walk test (6MWT) has exhibited satisfactory accuracy, reproducibility, 

and acceptability in both healthy individuals and those with varying degrees of congestive heart 

failure severity [22]. Nevertheless, the exploration of unintentional walk testing, a method analyzing 

free-living physical activity data, remains an unexplored area in current research, despite its potential 

to more accurately portray daily functional status. 

Therefore, in the present study we investigated the use of activity tracker on quantifying patient 

activities of daily living and follow-up. The primary objective of this study was to examine the 
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incorporation of unsupervised evaluations within the rehabilitation process in order to obtain a more 

multidimensional evaluation of the patient's progression throughout their recovery trajectory, taking 

into account the dynamic obstacles they encounter throughout their reintegration into their regular 

routines. 

This study proposes the incorporation of automated unsupervised assessments as an essential 

element in the rehabilitation process for persons after hip and knee replacement. This change exhibits 

the potential to enhance the accuracy of assessments, improve the management of these patients and 

therefore the outcome of the rehabilitation. 

2. Materials and Methods 

2.1. Data Source 

We conducted a retrospective observational study using anonymized depersonalized data. A 

cohort of 1144 patients who underwent elective total knee and hip arthroplasty was selected from a 

population of 1339 patients. Patients were included in the study if they used the digital application 

for at least 6 weeks after surgery and completed their patient reported outcome measures 

preoperatively. 82,189 days of activities were recorded and analyzed. Each patient provided written 

informed consent for the scientific use of their anonymized data.  

2.2. Recording Device and Outcomes 

All data collection was facilitated via the moveUP® application (moveUP®, Brussels, Belgium), 

which is registered as a medical device. The database comprises data from patients who underwent 

hip and knee arthroplasty across Belgium, France, and the Netherlands. This application operates on 

a smart virtual platform designed for digital monitoring, utilizing both objective and subjective 

patient data. The platform consists of two main components: a patient-facing mobile application and 

a web-based dashboard utilized by the care provider. Objective data were collected using a 

commercial activity tracker (Garmin Vivofit 4) worn 24/7 by the patients. Objective data consisted of 

the number of steps per day and the number of steps per minute throughout the day.  Those data 

were collected during the rehabilitation period for which frequent interactions are occurring between 

the patient and care providers (Time in system - Table 1). Clinical data and patients reported 

outcomes were also measured outside of the rehabilitation period. Patient reported outcomes such 

as the Oxford Knee Score, Forgotten Joint Score (FJS), Hip Osteoarthritis Outcome score (KOOS), 

Knee Osteoarthritis Outcome score (KOOS), UCLA Activity Scale (UCLA) and the EuroQol 5-

Dimension (EQ5D). 

2.3. Procedure 

The preoperative parameters were first explored and the impact of demographics of surgery 

type. Then we explored the variability of the activity parameters throughout the recovery process by 

assessing the intraweek variability.  

To explore the impact of quick or slow recovery trajectories on activity data, we used the JFS 

Minimal Clinically Important Difference (MCID) as a threshold at 3 months to divide the hip and 

knee patients into two groups: MCID achieved (MCID+) and MCID non-achieved (MCID-). The 

thresholds for MCIDs are 17.5 for THA [23], 16.6 for TKA [24] and 12,5 for unicondylar [23]. The 

flowchart on patient’s selection is presented in Figure 1. The complete characteristics of the patients 

are presented in Table 2. 

Finally, we investigated the impact of the type of knee surgery on activity metrics. 
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Figure 1. Data flowchart, note that for knee the threshold use to determine MCID+ and – are different 

for UKA and TKA [23,24]. 

2.4. Data Processing 

The Garmin activity tracker allows the user to collect the total number of steps each day, but the 

focal point of data collection was the step-per-minute data [25]. This continuous stream of data was 

automatically stored in the moveUP mobile application via an SDK connection, providing real-time 

access to participants’ dynamic activity profiles. To derive meaningful insights from the step-per-

minute data, two key parameters were extracted: Peak 1-Minute cadence (P1M), and Peak 6-Minute 

consecutive cadence (P6MC). Those metrics were computed for each day of recording. 

Table 2. Variable’s definition. 

Variable Definition 

Steps  Total steps accumulated in a day 

P1M, cadence Steps/minute recorded for the highest minute 

in a day 

P6MC, cadence Steps/6 minutes recorded for the 6 consecutive 

minutes in a day 

Light intensity, minute per week Total number of minutes at <100 steps/minute 

Moderate intensity, minute per week Total number of minutes at >100 and <130 

steps/minute 

Vigorous intensity, minute per week Total number of minutes at >130 steps/minute 
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2.4.1. Peak 1-Minute Cadence (P1M) 

The Garmin activity tracker allowed for the identification of the highest step count within any 

given minute throughout the day [26,27]. This metric, termed the P1M served as an indicator of 

participants’ maximal exertion or bursts of activity during their daily routines. Peak 1-min may 

represent one’s ‘best natural effort’, or rather the free-living walking cadence of which an individual 

is capable. Peak-1 min cadence is highly dependent on age, physical activity level (i.e., steps/day), 

physical function, and body mass index (BMI) [25,28,29]. 

2.4.2. Peak 6-Minute Consecutive Cadence (P6MC) 

The highest continuous activity during 6 minutes is detected in step data, using a sliding 6 min 

window with 1 min overlap [30]. The one with the largest number of steps is chosen as the most 

representative, in order to get the highest intensity reached during 6 consecutives minutes. 𝑃6𝑀𝐶𝑑𝑎𝑖𝑙𝑦 = 𝑚𝑎𝑥(∑ 𝑋𝑖5𝑖=𝑗6 ) 

With the first minute of day ≤ j ≤ last minute of day -6 

2.4.3. Intensity 

Walking cadence is a valid proxy of physical activity intensity. Moderate intensity is defined as 

activity above 3 metabolic equivalents (METs) which correspond to a threshold of 100 steps/min [31]. 

Light intensity physical activity is defined as activity between 1,6 and 2,9 METs [32]. Activities under 

20 steps/min are considered as incidental movements and were considered as sedentary behavior 

[29]. Results were presented as the minutes spent per week to be consistent with the World Health 

Organization recommendation about the minimal level of physical activity [33]. 

2.4.4. Outliers Removal 

To ensure the integrity and accuracy of the step-per-minute data, a rigorous outlier removal 

process was implemented. Instances where step-per-minute data exceeded 150 were considered 

outliers, as such values were deemed unrealistic for the targeted population undergoing knee and 

hip arthroplasty rehabilitation. These outliers were systematically identified and removed from the 

dataset to prevent skewing of results and to maintain the reliability of the recorded activity metrics. 

2.5. Statistical Analysis 

The normality of each parameter was checked using graphical methods (boxplots, histograms 

and Q–Q plots). Data were presented as mean (standard deviation) or median [p25 ; p75] according 

to the type of distribution.  

To determine the most stable indicators of the gross motor function of the patients, we assessed 

the intraweek variability of the parameters using the coefficient of variation across the seven days of 

the week.  

We analyzed the different outcomes of both knee and hip OA patients using mixed models [34]. 

For each outcome, a mixed model with random intercept was used. The values from each day were 

treated as repeated measures. The model equation is: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖,𝑡 =  𝛽1𝑑𝑎𝑦𝑡 + 𝛽2𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑡 + 𝛽3(𝑑𝑎𝑦 × 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)𝑡 + 𝛽4𝑎𝑔𝑒 + 𝛽5𝑔𝑒𝑛𝑑𝑒𝑟𝜀𝑖,𝑡 + (𝛼+ 𝛼𝑖) 

With  𝜀𝑖,𝑡~(0, 𝜎2) 𝛼𝑖~(0, 𝜇2) 

Where α and 𝛽1, 𝛽2 and 𝛽3were employed as fixed effects, while 𝜀𝑖,𝑡 was used to represent random 

errors. The parameter 𝛼𝑖 was utilized to quantify the random effect. 
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Our analysis incorporated fixed effects related to recovery, days after surgery (spanning from 1 

to 60 for hip and 1 to 90 for knee surgeries), as well as the interaction between the two. To ensure 

comparability, we imposed constraints on the estimated baseline measures. This was achieved by 

normalizing all groups, subtracting the mean values of each group's first session from all subsequent 

sessions. Essentially, this constraint allowed for the adjustment of baseline measurements and 

accommodated variations in the relationship between baseline and follow-up scores across different 

sessions. 

It is important to note that centering the explanatory variables using mean values facilitated the 

direct interpretation of this effect as an intergroup effect [35]. 

We then computed the time, and the associated 95% confidence intervals, needed to differentiate 

between the recovery status. 

Statistical analyses were performed at an overall significance level of 0.05. Statistical analyses 

were conducted in RStudio (version 2023.09.0) with R version 4.4.2., using the LME4 package to run 

the mixed effect models [36]. 

3. Results 

The details of the patient population are displayed in Table 2.  

Significant differences were observed between the hip and knee population for the age, body 

mass index (BMI), patients reported outcomes, and the time of using the recording system. Age 

difference was 1.4 years [95%CI -2.43 ; -0.26], patients undergoing hip surgery being younger than 

for total knee replacement. 

Table 2. Clinical characteristics of the patients. 

Variables Overall (n = 

1144) 

Hip (n = 683) Knee (n = 461) p-value 

Gender, female 580, 51% 348, 51% 232, 50% 0.30 

Age, years 62 (10) 62 (10) 63 (10) 0.015 

BMI, kg/m² 29.0 (10.6) 28.0 (11.1) 30.5 (9.7) <0.001 

Type of surgery    <0.001 

Total 1010, 89% 665, 97% 345, 75%  

Unicondylar 101, 8.9% / 101, 22%  

Revision 22, 1.9% 10, 1.5% 12, 2.6%  

Resurfacing 8, 0.7% 8, 1.2% /  

Oxford Score 24 (8) 24 (8) 25 (8) 0.21 

FJS 10 [4 ; 20] 10 [4 ; 21] 10 [4 ; 19] 0.19 

OOS     

Pain 46 (17) 45 (18) 46 (16) 0.41 

Symptoms 50 (18) 47 (18) 54 (17) <0.001 

ADL 48 (18) 46 (18) 50 (18) <0.001 

QoL 30 (18) 31 (19) 29 (16) 0.30 

Leisure & Sport 19 [5 ; 31] 25 [6 ; 38] 10 [0 ; 25] <0.001 

UCLA 3 [2 ; 5] 3 [2 ; 5] 3 [2 ; 5] 0.30 

Time in system, 

days 

81 [63 ; 102] 76 [61 ; 96] 91 [65 ; 110] <0.001 

Time in system 

since 

intervention, 

days 

62 [50 ; 85] 59 [50 ; 69] 78 [50 ; 91] <0.001 

FJS: Forgotten Joint Score , KOOS: Knee Injury and Osteoarthritis Outcome Score, , HOOS: Knee Injury and 

Osteoarthritis Outcome Score, UCLA : UCLA Activity Scale. 
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3.1. Preoperative Scores 

First, we analyzed the data from the preoperative evaluation. Interestingly, when analyzing the 

overall number of steps per day we did not find any statistically significant difference between hip 

and knee OA patients. However, when using the P6MC and the P1M we did find statistically 

significant differences with higher cadences in patients with hip OA. The complete results were 

presented in Table 3. 

Table 3. Pre-operative functional characteristics of the included patients; median [p25 ; p75]. 

Variables Overall (n = 

5806) 

Hip (n = 3267) Knee (n = 2539) p-value 

Steps, n 4477 [2601 ; 

6941] 

4495 [2618 ; 6865] 4455 [2569 ; 7072] 0.90 

P6MC, cadence 61 [44 ; 85] 63 [46 ; 85] 58 [43 ; 82] <0.001 

P1M, cadence 92 [68 ; 115] 95 [70 ; 118] 89 [66 - 110] <0.001 

Intensity, 

min/week 

    

Light 613 [371 ; 938] 619 [364 ; 910] 609 [315 ; 968] <0.001 

Moderate 0 [0 ; 14] 0 [0 ; 14] 0 [0 ; 7] 0.80 

Vigorous 0 [0 ; 0] 0 [0 ; 0] 0 [0 ; 0] 0.89 

n represents the number of days recorded. 

Next, to determine whether a separate analysis is necessary for female and male patients, we 

compared the pre-operative data based on gender (Figure 2). 

On the one hand, for hip OA we did not find statistically significant differences for the P1M (97 

[75 - 115] and 95 [71 - 117] for female and male respectively, p = 0.12), the P6MC (63 [48 - 83] and 62 

[45 - 88], p = 0.81) or for the total number of steps per day (4628 [2673 - 6920] and 4508 [2814 - 6939], 

p = 0.73), nor for age (62.7 (8.9) and 62.6 (9.4), p = 0.83). 

On the other hand, for knee OA statistically significant differences were found for the total 

number of steps (5453 [3190 - 8444] and 3917 [2432 - 6217] for female and male respectively, p < 0.001), 

the P6MC (65 [49 - 88] and 53 [39 - 76], p < 0.001), the P1M (97 [75 - 115] and 83 [62 - 105], p < 0.001). 

Interestingly we found a statistically significant difference in the age at surgery, women being older 

than men (65.1 (8.5) and 61.7 (8.3), p < 0.001). 

 

Figure 2. Preoperative characteristics according to gender and localization. 

To further evaluate the potential influence of the age difference observed in knee patients we 

performed linear regression to determine if age has an influence on the different studied parameters. 

Scatter plots are presented in Figure 3. 
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For female participants, concerning the total number of steps per day the interaction between 

age and joint is not significant (p = 0.07), but there is a significant effect of age (β = -86 (8), p < 0.001) 

and joint (β = 1000 (141), p < 0.001). For the P6MC there is no interaction between age and OA location 

(p = 0.23), but there is a significant effect of both age (β = -0.47 (0.05), p < 0.001) and joint (β = 3.2 (0.9), 
p = 0.001). For the P1M there is a significant interaction between age and joint (β = 0.26 (0.12), p = 
0.031) as well as a significant effect of age (β = -0.54 (0.07), p < 0.001) and joint (-16 (8), p = 0.042). 

For male participants, concerning the total number of steps per day the interaction between age 

and joint is not significant (p = 0.44), and there is no statistically significant effect of age (β = 0.33 
(0.61), p = 0.96) but a significant effect of joint (β = -720 (120), p < 0.001). For the P6MC there is no 

interaction between age and joint (p = 0.79), nor a significant effect of age (β = -0.01 (0.05), p = 0.85), 

but a significant effect of joint (β = -8.3 (0.9), p < 0.001). For the P1M there is no interaction between 

age and joint (p = 0.09) but significant effects of age (β = -0.02 (0.06), p < 0.001) and joint (-9.8 (1.1), p 

< 0.001). 

 

Figure 3. Evolution of the preoperative parameters according to age of the patients. 

3.2. Variability of the Outcomes 

As presented in Figure 4 we can clearly see a difference in terms of variability between on the 

one hand the total number of steps per day presenting a lot of variability and on the other hand the 

cadence during the P6MC and the P1M being much more consistent through the day. 
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Figure 4. Evolution of the intraweek variability of the different studied parameters. 

3.3. Evolution of the Parameters during the Rehabilitation Process 

3.3.1. According to Recovery 

When comparing the time needed to get back to initial (pre-operative) values, important 

differences were observed for the computed outcomes (see Figures 5).  

THA patients who did not reach their MCID at 3 months (MCID-) took statistically 7 days more 

to recover their pre-operative activity level (number of steps) than patients who reached their MCID 

at 3 months (MCID+) (33 days for MCID+ and 40 days for MCID-), for the P6MC a difference of 6 

days (26 days for MCID+ and 32 days for MCID-), for P1M the MCID+ regains the initial value after 

35 days while the MCID- did not reach the initial value after the 60 days of follow-up. 

For TKA, for the number of steps only the MCID+ group reaches the initial value after 40 days, 

for the P6MC a difference of 10 days (29 days for MCID+ and 39 days for MCID-), for P1M a difference 

of 12 days (38 days for MCID+ and 50 days for MCID-). 

When comparing the trajectory of the evolution in the different groups we observed that for both 

THA and TKA the newly developed outcomes, P6MC and P1M, allowed for early identification of 

differences in comparison with the total number of steps per day (Table 4). 

Table 4. Results of the mixed effect model analysis, including the interaction with the recovery status 

and the days. β and standard errors are presented. 

Variables Day Recovery Age Gender Day*Recovery Diff. 

Hip 

Steps, n  69.0 (1.1) 443 (77) -11.8 (7.9) -513 (155) 16.5 (1.3) 25 
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P6MC, 

cadence 

0.65 (0.01) 2.44 (0.87) -0.04 (0.08) -4.34 (1.58) 0.10 (0.01) 16 

P1M, 

cadence 

0.62 (0.01) 2.7 (1.0) -0.11 (0.8) -4.1 (1.6) 0.13 (0.02) 15 

 Knee 

Steps, n 36.5 (0.5) 452 (62) -12 (10) -720 (201) 11.8 (0.8) 14 

P6MC, 

cadence 

0.33 (0.01) 3.4 (0.7) -0.03 (0.01) -6.4 (2.0) 0.09 (0.01) 13 

P1M, 

cadence 

0.35 (0.01) 2.6 (0.8) 0.09 (0.10) -6.8 (2.2) 0.08 (0.01) 9 

Diff. Difference (days), for Recovery the MCID+ is the reference, for Gender the reference is the female group. 

 

Figure 5. Evolution of the different studied parameters for Hip and Knee according to recovery. The 

green rectangles indicate the pre-operative values (with 95% CI). 

Then we analyzed the intensity of the activities through the rehabilitation process. The evolution 

for light and moderate activities are presented in Figures 6 (due to the quasi absence of vigorous 

activities these results were not presented). As for the number of steps and cadence we observed 
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differences between the recovery status. Interestingly we also observed that both THA and TKA 

patients are quickly able to recover higher level of moderate activities, which were barely absent pre-

surgery. 

 

Figure 6. Evolution of the different studied parameters for Hip and Knee according to recovery. The 

green rectangles indicate the pre-operative values (with 95% CI). 

3.3.2. According to the Type of Surgery 

For patients with knee prosthesis, we were able to perform comparisons according to the type 

of surgery, which is an important point given the different clinics and symptomatology’s of these 
patients. There was no statistically significant difference in age between both interventions (63.7 (6.2) 

and 62.7 (7.4) for TKR and UKA intervention respectively, p = 0.44) and equal gender distribution 

(χ²=0.71, p = 0.70).  

Results of the mixed effect models are presented in Table 5 and Figure 6. 

When comparing the time needed to get back to pre-operative values, important differences 

were observed for the computed outcomes (Figures 7). 

For the total number of steps only patients with UKA surgery get back to their initial values after 

36 days and then continue to progress above pre-operative values while patients with TKR barely get 

to their initial value after the 90 days. On the other hand, for the P6MC a difference of 16 days was 

observed (25 days for UKA and 41 days for TKR), as well as for the P1M where a difference of 23 

days was observed (28 days for UKA and 51 days for TKR). 

Again, when comparing the different outcomes to differentiate the two interventions we 

observed that early differences are detected using the P6MC and P1M in comparison with the total 

number of steps. 

Table 5. Results of the mixed effect model analysis for patients with TKR, including the interaction 

with the type of prosthesis and the days. β and standard errors are presented. 

Variables Knee 

Day Type Day*type Diff. 

Steps, n 50 (1) 392 (147) 11 (2) 7 

P6MC, cadence 0.5 (0.01) 4.8 (2.5) 0.02 (0.02) 4 

P1M, cadence 0.5 (0.01) 6.3 (3.2) 0.03 (0.02) 3 

Diff. Difference (days). 
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Figure 7. Evolution of the different studied parameters according to the type of knee prosthesis. The 

green rectangles indicate the pre-operative values (with 95% CI). 

4. Discussion 

4.1. Main results 

The results of this study provide insights into the preoperative functional characteristics, 

variability of outcomes, and the evolution of activity parameters through the rehabilitation process 

in patients with hip and knee OA undergoing THA and TKA.  

The initial noteworthy difference observed in preoperative parameters was the capacity of 

P6MC and P1M to distinguish between populations with knee and hip OA conditions. In contrast, 

the number of steps did not exhibit such discriminatory capacity. Gender-based analysis also 

revealed interesting nuances in preoperative characteristics. While no significant differences were 

observed in hip OA patients based on gender, significant differences were found in knee OA patients, 

including the total number of steps, P6MC cadence, P1M cadence, and age at surgery. Female knee 

OA patients exhibited higher values in these parameters. For both female and male patients, age and 

OA location showed significant effects on the total number of steps per day, P6MC cadence, and P1M 
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cadence. These findings underscore the importance of considering age as a contributing factor in 

patients with hip and knee OA. 

Intraweek variability analysis revealed notable differences among the studied parameters. While 

it is established that daily step count is correlated with cadence metrics [28], our study revealed that 

the variability in the number of steps is twice as substantial as that observed in cadence metrics. This 

suggests that cadence measurements as P6MC and P1M may offer more stable indicators of gross 

motor function compared to the total number of steps per day. 

Concerning the time required to return to preoperative values based on the type of arthroplasty 

(THA or TKA). Significant differences were observed in the recovery trajectories, with the cadence 

metrics (P6MC and P1M) showing early identification of differences compared to the total number 

of steps per day. These results highlighted the potential of P6MC and P1M as sensitive measures for 

assessing the rehabilitation progress in both THA and TKA patients. The median value for P1M was 

similar to normative value identified in older adults (106±16 and 97±20 for male and female 

respectively [37]. Concerning the number of steps, our results aligned with patterns observed in 

numerous prior studies [38]. Patients typically resumed their pre-operative activity levels 

approximately six to ten weeks after undergoing surgery, which is consistent with findings from 

previous accelerometry investigations [19,39]. Notably, patients who underwent TKA experienced a 

slower recovery compared to those who received partial knee arthroplasty. This outcome mirrors the 

trends observed in existing literature. Additionally, patients who underwent THA tended to recover 

gait quality more rapidly and demonstrated greater improvements compared to their pre-operative 

levels in line with previous studies, although most of these studies primarily focus on total step 

counts rather than walking session durations or patterns of activity accumulation in these patient 

populations [40,41]. 

The cadence is often regarded as a reasonable proxy-indicator of ambulatory intensity, with a 

cadence value of ≥100 steps/min in adults consistently identified as a heuristic for ‘good walking’ 
[29,42]. The newly introduced metric, P6MC, as compared to P1M and P30, exhibits an intriguing 

difference, wherein P6MC values are 20 to 30 steps lower than P1M, highlighting the distinction 

between these metrics. Considering established cadence thresholds: 40-59 for purposeful stepping, 

60-79 for slow walking, 80-99 for medium walking, 100-119 for brisk walking, and >120 for fast 

walking [29]; it becomes apparent that our OA population only demonstrated recovery in slow 

walking during the 6-minute duration, while brisk walking was restored within one minute. This 

could still be construed as a diminished functional capacity during the period assessed in this study. 

Previous studies showed good correlation between P6MC cadence and the official P6MC 

distance, however, the direct transformation from cadence to distance is still challenging [30]. The 

sensitivity of this outcome in detecting older individuals with functional capacity has been 

demonstrated [43]. A gait cadence of 107 steps/min during a 6MWT has been identified as threshold 

to distinguish older adults with an inability to walk a minimum functional threshold (defined as 370 

m) with reasonably high sensitivity (80%) and modest specificity (57%). Interestingly it has also been 

shown that the unsupervised version of the 6-minute walk test (random walk) give the same results 

as the official (supervised) 6-minute walk test [44]. 

The utilization of wearable sensors for assessing knee arthroplasty procedures is becoming 

increasingly prevalent [45]. However, the discernible clinical value of this technology is still a subject 

of ongoing investigation. One potential indicator under scrutiny is the variability in physical activity 

following surgery. Notably, patients exhibiting excessive variation in physical activity have been 

shown to experience more pronounced postoperative pain [46]. 

It is noteworthy that only a limited number of patients with knee or hip OA adhere to the 

physical activity guidelines set by the WHO [47]. In the context of TKA and THA, previous studies 

indicated a rise in light activity at 6 months postoperatively, with no concomitant change in moderate 

or vigorous intensity [40]. In a comparative study the P1M improved from 70.0±23.7 preoperatively 

to 91.5±26 at 1 year postoperatively after TKA [48]. Our investigation suggests that this improvement 

is realized much earlier than the conventional one-year postoperative timeframe. The exploration of 

variables related to physical activity holds significance, given that heightened physical activity has 
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been associated with improvements in gait function after TKA. Notably, a suggested cutoff point of 

3053 steps per day emerged as a potentially valuable predictive factor for gait function following 

TKA [49]. 

Patients' trajectories following arthroplasty display considerable variability, and extensive 

discussions have revolved around categorizing individuals as slow or quick progressors. Notably, 

these discussions have primarily centered on subjective questionnaires like patient reported outcome 

measures [50]. The substantial variability in physical activity among patients has prompted calls for 

the development of stratification tools [51]. In our study, we categorized the patient population based 

on MCID of the FJS at the three-month mark. This time point aligns with routine medical 

consultations and, in some countries, marks the conclusion of bundled payments. Our analysis 

demonstrates that activity data holds the potential to partially predict which patients will achieve 

this milestone early in the recovery process [52].  

4.2. Strengths and limitations 

This study demonstrates several notable strengths that enhance its robustness and scientific 

significance. Foremost among these strengths is the study's commitment to real-world relevance, 

evident in its recognition of the critical importance of assessing patients in ecological environment 

and conditions [53–56]. This approach stands in stark contrast to conventional clinical tests, providing 

a more ecologically valid perspective on the rehabilitation process. 

A pivotal strength lies on the utilization of objective measurements facilitated by digital 

biomarkers collected through wearable sensors. This methodology not only ensures the continuous 

acquisition of real-time data but also offers a more nuanced and sensitive evaluation compared to 

subjective assessments by clinicians [57–59]. Furthermore, the integration of technology enables 

continuous monitoring between sessions, affording the ability to detect even subtle changes in a 

patient's status [60–62]. This feature significantly enhances the precision of the rehabilitation process, 

ensuring a proactive response to evolving patient needs. 

But the results of this study also have to be seen with various limitations. Firstly, we did not 

monitor wear time or adherence to wearable, this might have an impact on total number of steps, 

while it should have fewer impacts on cadence metrics. Secondly, concerning the P6MC, previous 

studies have shown that this could be aggregated as an unsupervised 6 minutes walking test. 

However, it cannot be sure that the activity was walking [30,63]. But the cumulative step count over 

the 6-minute duration provides valuable information about participants’ endurance and functional 
capacity. Thirdly, a notable study limitation is the potential variation in smartphone usage among 

participants. The study assumes a certain level of familiarity and consistent use of smartphones, 

which could introduce confounding factors if participants differ in their comfort and proficiency with 

such technology (i.e., digital literacy) [64]. Additionally, the success of the proposed approach relies 

on the widespread adoption and accessibility of smartphones and wearable sensors, which may not 

be universally available to all individuals undergoing rehabilitation [65]. This raises concerns about 

the generalizability of the study findings to diverse populations, potentially introducing biases based 

on socio-economic or demographic factors. 

4.3. Future works 

As various factors influencing activity recovery after surgery such as the surgical approach [66], 

the use of crutches [39], and BMI [67] - it would be interesting to integrate these parameters in more 

complex model to better predict the evolution of the patients through the rehabilitation process. 

Future research presents exciting opportunities for advancements and refinement of this 

methodology. Firstly, research into user engagement strategies with wearable devices could explore 

innovative approaches to enhance adherence without direct supervision. This could involve the 

development of user-friendly interfaces, personalized feedback systems, or even incorporating 

elements of gamification to promote sustained and consistent use. 

Moreover, future research could focus on expanding the scope of wearable technology beyond 

wearables, smartphones, exploring alternative devices or communication methods to cater to 
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individuals who may not have access to wearables. This inclusivity-driven approach would 

contribute to a more comprehensive understanding of the benefits and challenges associated with 

wearables in diverse populations. 

To bolster the validity and reliability of wearable sensors, future research could delve into 

advancements in sensor technology, refining algorithms, and conducting thorough validation 

studies. Comparative assessments against established clinical measures can provide a clearer 

understanding of the accuracy and potential limitations of these devices. 

Additionally, exploring the integration of artificial intelligence and machine learning algorithms 

for data analysis could open new avenues for deriving meaningful insights from the vast amount of 

data collected through wearables. These technologies could help identify patterns, predict 

rehabilitation progress, and tailor interventions based on individual patient needs. 

5. Conclusions 

This study explores the capacity for technology-assisted rehabilitation to bring about significant 

changes, particularly through the incorporation of automated, unsupervised evaluations utilizing 

wearable sensors in the rehabilitation of patients who have undergone hip and knee replacement 

surgeries and suffer from OA. The study emphasizes the constraints of conventional clinical 

evaluations and the changing nature of real-life rehabilitation encounters. Using wearable sensors 

provides a patient-centered and ecologically sound method, addressing the limitations of subjective 

evaluations conducted in clinics. 

The results highlight the importance of cadence measurements, the P6MC and the P1M, in 

differentiating between individuals with hip and knee conditions and monitoring their recovery 

progress. These indicators demonstrate sensitivity and surpass the total step count, offering useful 

insights into the functional capacity and progress of patients throughout rehabilitation. 

The use of technology-based, self-directed evaluations represents a fundamental change in 

rehabilitation methods, offering improved accuracy, tailored treatments, and heightened patient 

involvement. 
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